
Models and Measurments for Multi
Layered Displays

Gareth Bell
Deep Video Imaging Ltd

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
26 JUL 2006

2. REPORT TYPE
Final Report (Technical)

3. DATES COVERED
 02-01-2003 to 12-04-2004

4. TITLE AND SUBTITLE
Measurement and Metrics for Multi-Layer Display Technology

5a. CONTRACT NUMBER
F6256203P0133

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Gareth Bell

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Deep Video Imaging, Ltd,Airport Road, Mystery Creek, RD 2,Hamilton
,NA,2005

8. PERFORMING ORGANIZATION
REPORT NUMBER
AOARD-034004

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
The US Resarch Labolatory, AOARD/AFOSR, Unit 45002, APO, AP,
96337-5002

10. SPONSOR/MONITOR’S ACRONYM(S)
AOARD/AFOSR

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)
AOARD-034004

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
?Deep Video Imaging Ltd, Airport Road RD2, Mystery Creek, Hamilton, 02021 New Zealand (Attn:
Gareth Bell). The U.S. Government has a non-exclusive license rights to use, modify, reproduce, release,
perform, display, or disclose these materials, and to authorize others to do so for US Government purposes
only. All other rights reserved by the copyright holder.

14. ABSTRACT
Immediate concerns in multi-layered display development centre around a method to describe and
measure the trade-off between Moire interference, viewed as rainbow colored bands, and image sharpness.
Since displays are only wholly defined in conjunction with an observer, we need to find a map between
what is perceived, what is measured and the actual design artifacts. A perceptually weighted metric
describing the trade-off forms the central node. If we approach the node from the physical embodiment we
need measurements and if we approach from the observer, we need to find out if what they are actually
seeing is well described by the metric. A model that describes how changing the distance between a
holographic diffuser and how it effects the image was verified experimentally within an order of
magnitude, but would benefit from more further experimental comparison. A model was produced that
predicts the Moire interference between two image layers which works well. However the metric described
needs further investigation. A survey was also completed that showed that was surprising in the sense that
viewers appreciate image clarity and will tolerate more Moire interference in the tradeoff described above.

15. SUBJECT TERMS
Display Technologies, Mathematical Modeling

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

80

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Abstract
Immediate concerns in multi-layered display development centre around a method

to describe and measure the trade-off between Moire interference, viewed as rainbow
coloured bands, and image sharpness. Since displays are only wholly de�ned in
conjunction with an observer, we need to �nd a map between what is perceived, what is
measured and the actual design artefacts. A perceptually weighted metric describing the
trade-off forms the central node. If we approach the node from the physical embodiment
we need measurements and if we approach from the observer, we need to �nd out if what
they are actually seeing is well described by the metric. A model that describes how
changing the distance between a holographic diffuser and how it effects the image was
vari�ed experimentally within an order of magnitude, but would bene�t from more further
experimental comparison. A model was produced that predicts the moire interference
between two image layers which works well. However the metric described needs further
investigation. A survey was also completed that showed that was surprizing in the sense
that viewers appreciate image clarity and will tolerate more moire interference in the
tradeoff described above.

Contents

List of Tables 7

1 Background 8

1.1 Multi Layered Display Technology 8

2 Spatial Filtering 10

2.1 Objectives 10

2.2 Introduction 10

2.3 Theory 10

2.4 Experiments 15
2.4.1 Bidirectional Scattering Transfer Distribution Function

Measurement 15
2.4.2 Point Spread Function Measurement 17

2.5 Analysis 19

2.6 Discussion 20

3 Moire Interference 30

3.1 Aims 30

3.2 Introduction 30

3.3 Theory and Software Model 30
3.3.1 Square Root Integral Difference Metric 33

3.4 Method 36
3.4.1 Cutting the display samples 36
3.4.2 Collecting the Data 36

3.5 Analysis and Results 39

3.6 Discussion 39

4 Image Quality Survey 44

4.1 Objective 44

4.2 Experimental Setup and Method 44

4.3 Results 46

4.4 Discussion 46

5 Conclusions 51

4

A Spatial Filtering 52

A.1 Gatherdata Code 52

A.2 Movestage Code 61

A.3 Stagehome Code 61

A.4 get_ yuv Code 63

A.5 btdfFilter Code 63

A.6 Calculate�lter Code 64

A.7 compareresults code 66

A.8 convertData code 67

A.9 calculateModelTarget Code 68

B Moire Interference 70

B.1 MoireSQRITheory Code 70

B.2 SQRI Code 70

B.3 Contrast Ratio 72

B.4 gatherData 73

B.5 createDisplay Code 79

B.6 subPixel Code 80

5

Acknowledgements
Mr. Dan Evanicky for the original metric inkling.

Dr. Tae Woo Park from AOARD and Dr. Darrel Hopper from the AFRL for providing
funding and their patience.

Mr. Jim Barry, Mr. Andy Hodgkinson andMr. Gabriel Engel for their guidance and pa-
tience.

Mr. Dave Ferguson for �elding many late and often distressed phone calls.

Dr. Evan Bidder for his review of the original proposal to AOARD.

Dr. Gary Bold and Prof. John Harvey for guidance.

Dr. William Wong for his suggestions on the survey.

6

List of Tables

1 Notation used for Spatial Filtering Model. 12

2 Optical Sample Description. 16

3 Equipment list and serial numbers where avaliable 17

7

Chapter 1
Background

1.1 Multi Layered Display Technology
Multi-layered displays consist of �at panels stacked in depth and with a pre-set distance.
These displays provide a method to improve information interaction and search, by
providing both increased display real-estate in one view and the three dimensional cues
lacking in both two dimensional displays and stereoscopic systems. Traditional graphical
user interfaces make a distinction between the information being displayed, and the
devices used to control it, by using depth cues such as shading and opacity to suggest
the two concepts inhabit separate layers. However there exist additional cues, such as
stereopsis, accommodation, convergence and parallax available on multi-layered displays
which provide pre-attentive information to the viewer. This helps to decrease clutter
on the display making transparent layers possible by reducing interference, as well as
improving search time for required information. Thus more information can be displayed
in a given area; helping the viewer maintain peripheral awareness of one data set whilst
viewing another, easier switching between tasks as well as decreasing the fatigue created
by turning ones head when viewing multiple monitors.
MLD architecture may be broken down into the following hierarchy:

Several display layers stacked at a preset distance from each other in conjunction with
a high brightness backlight

A display layer which is a two dimensional array of pixels
A sub-pixel which is composed of

Polarizer
Glass substrate
Electrode and driving electronics
Alignment layer
Super Twisted Nematic Liquid Crystal
Alignment layer
A red, green or blue Colour Filter/Black Matrix
Common Electrode
Glass Substrate
Analyzing Polarizer

The sub-pixel can be thought of light valve that controls the emitted irradiance of a
red, green or blue light depending on the attached colour �lter. Liquid crystal, a pseudo
regular arrangement of long, polar organic molecules, retards the extraordinary ray by an
amount that depends the electric �eld applied across it. Since the rear polarizer excludes
the ordinary ray the light that exits through the front polarizer can be controlled by varying
the strength of the applied electric �eld.
A pixel is comprised of three sub-pixels, usually red, green and blue which when

8

Section 1.1 Multi Layered Display Technology

integrated by the human eye, which is usually relatively a long distance away from
the screen compared to the size of each pixels, combine to form a single colour. This
mechanism is often called `colour subtractive', because it starts from white light which is
the sum of the entire visible spectrum, and �lters off the unwanted part of the spectrum
with colour �lters. The display is a 2D array of these pixels and includes driving
electronics which takes the digital signal (usually LVDS or TTL), and addresses each sub
pixel with the correct analogue drive voltage.

9

Chapter 2
Spatial Filtering

2.1 Objectives
To determine the effect of a diffuser acting on a target object given the:-
the distance from the display layer
the Bidirectional Transmission Distribution Function of the diffuser

2.2 Introduction
To optimize the method used to abate the perception of moire interference whilst
preserving image quality in MLDs, it is important to understand how placing a spatial
�lter over the rear display layer effects the image formed on the retina. Some intuition
may be gained by considering ??. A light source is placed behind a small pinhole with a
spatial �ltering layer positioned at some distance above it. For every point on the spatial
�lter there is a set of rays entering that are redirected and incident on the lens and hence
imaged on the retina, for example those shown in red. Conversely most rays emitted from
the spatial �lter do not make it to the retina, for example those shown in yellow. The
illuminance and mean angle of the small bundle of rays entering at that point and output
angle are parameters into the bidirectional transmission distribution function (BDTF)
which determines the exit luminance. The BDTF can be thought of an intensity map for
the corresponding incident and exit angles, where the spatial �lter distance and viewer
distance determine the path that is taken across this map, which in turn determines the
distribution of the spot produced on the retina. The theory below expands this idea into a
formal derivation and the experiment below seeks to verify its validity.

2.3 Theory
A simple model of the eye's lens system is assumed: a linear transform of a scene in
3D world coordinates to the 2D coordinate system of a �at retina, the same assumption
as used in image processing and computer graphics. Because of variance from person
to person, and for simplicity, the eye's own point spread function and any distortions
introduced by the lens are ignored. The contrast sensitivity function, incorporated in the
metric accounts for the qualities of the retina and subsequent processing.
To determine the effect of the spatial �lter element on small features on the rear

display layer consider the optical system shown in Figure: 2.
The object is partitioned into a �ne grid which is mapped by the thin lens, focused to

give a magni�cation M, to a grid on the retina

10

Object

Diffuser

Unviewed ray bundle

Light source

Viewed ray bundle

Spatial Filter

Pinhole

oω

ωo

ωi θ

Figure 1: Overview of the spatial �ltering model. The spatial �lter redirects rays from the
pinhole to the camera that would not arrive otherwise. The bidirectional transmission
distribution function (BTDF) detirmines the luminance at that point.

11

Symbol Description
x; y; z x,y,z coordinates
ZOD Distance between the object and the diffuser
ZDL Distance along the z axis between the diffuser and the lens
ZLR Distance along z axis between lens and retina
ROD� Ray from object to diffuser
RDL� Ray form diffuser to lens
RLR� Ray from lens to retina
�AD Small area surrounding the intersection of ray we are following with diffuser plane
�AR Small area surrounding the intersection of ray we are following with retina plane

OD Solid angle formed between point source and �AD

DL Solid angle formed between the intersection of the ray we are following and the diffuser plane
M Magni�cation of the lens system
jj Modulus of a vector
kk Norm of a vector
! Direction of optic �ow
!i kROD�k
!o kRDL�k

Table 1: Notation used for Spatial Filtering Model.

ODZ
DLZ LRZ

Oxδ
Oyδ

Ryδ

Rxδ

*R

),(DD yx

eye - focal length f

diffuserobject

maginified view of retina

Figure 2: The notation for the spatial �ltering dirivation below.

12

Section 2.3 Theory

GR = �M

266664
(x1; y1) (x2; y1) � � � (xn; y1)

(x1; y2)
. . . (xn; y2)

...
. . .

...
(x1; ym) (x2; ym) � � � (xn; ym)

377775 (1)

The negative sign implies that the x coordinate has been re�ected in the y axis and
vice versa. A ray R� from a point at (x0�; y0�) behind the diffuser is divided into three
sections eROD�, eRDL�, and eROD�. eRDL�. The ray, whose direction is described by the
inclination angles (#H ; #V); is resolved into components in the horizontal z-x plane and
vertical z-y plane respectively and is redirected by the diffuser at the point

(xD�; yD�) = (ZODtan(�H); ZODtan(�v)) (2)

The point (xD�; yD�)is a new object which is imaged by the thin lens. The
surrounding grid element at the retina is the the x and y coordinates of the imaged point
divided by the grid size at the fovea, rounded up to the nearest integer

(xR�; yR�) = (
x�D
M

;
y�D
M

) (3)

GR(xR�; yR�) = (ceil
�
xR�
�xR

�
; ceil

�
yR�
�yR

�
) (4)

Given the irradiance of the light entering the diffuser contained within a small solid
angle, the output luminance on the exit side at that point is

LD(!0) = L0(!i)fs(!i �! !o)
D(!i) (5)

= L0(!i)fs(!i �! !o)
�AD

jROD�j2
:

Now

fs =
dL0(!0)

Li(!i)d
(!i)
(6)

is the BDTF for the diffuser element where

!i = kRODk (7)
!o = kRDLk :

The illuminance at the lens is

EL = LD(�H ; �V)�
DL (8)

= LD(�H ; �V)
Alens

jRDL�j2
and the �ux through the lens is

13

Chapter 2 Spatial Filtering

�lens = ELAlens (9)

= LD(�H ; �V)
A2lens
jRDL�j2

The illuminance imaged at each grid area on the retina by the lens, the stimulus at
that area, is the �ux through the lens and divide it by the area of the corresponding grid
element

Ev

������� xRyR ' �lens
�AR

(10)

So

Ev

������� xRyR '
fs(!i * !o)LO(�H ; �V)A

2
pupil

(
x2R
M2 +

y2R
M2 + Z2OD)(

x2R
M2 +

y2R
M2 + Z2DL)

@AO
@AR

(11)

However the result should be independent of the grid and so dissolve the ratio on the
right hand side. The

lim
@AR ! 0

@AD
@AR

=
@AO
@AR

(12)

for
@AF = f(@AO) (13)

and since

@AR = @xR@yR (14)
= M@x0M@y0

= M2@A0

which gives

@AR
@A0

=M2 (15)
and so

Ev

������� xRyR '
fs(!i * !o)LO(�H ; �V)A

2
pupil

(
x2R
M2 +

y2R
M2 + Z2OD)(

x2R
M2 +

y2R
M2 + Z2DL)M

2

14

Section 2.4 Experiments

where

�H = arctan(
xR

MZOD
) (16)

�V = arctan(
yR

MZOD
)

2.4 Experiments
There are two parts to the following experiment, the �rst is to measure the bidirectional
scattering distribution function and to use the model outlined in the theory to predict the
contrast ratio of a model target. The second part measures the contrast ratio of the target
directly with a camera. The results of the two approaches are then compared. In the
following section we describe the approach as a whole and examine the results for the
60�x10� elliptical diffuser measured in the 10� direction, denoted 60�x10�(10�).

2.4.1 Bidirectional Scattering Transfer Distribution Function
Measurement

2.4.1.1 Method

Light Shaping Diffuser technology has proved successful in commercial Multi Layered
Displays because it was found to allow �ne control of the amount of the "image clarity"1
of the rear display layer, largely due to its custom scattering properties. Five samples were
sent to the National Institute of Standards and Technology 2 for BTDF measurements
for comparison with the point spread function scattering measurements made in the next
section. They were cut from the original 52 mm x 52 mm square samples received from
POCTM and had minor surface blemishes.

The data received from NIST are reported as Bidirectional Transmittance Distribution
Function, de�ned by

BTDF =
d�s

d
�i cos �t

1 This was the in-house term for the quality of the rear display, the improvment of which has been crucuial to
the commercial viability of the product. It was important to realise the "image clarity" actually depended on
both the area contrast of the image and the amount of "blur" being applied.
2 Measurments made by:
Thomas A. Germer
Optical Technology Division
National Institute of Standards and Technology
100 Bureau Drive Stop 8442
Gaithersburg, MD 20899-8442
United States

15

Chapter 2 Spatial Filtering

Sample Type Size
1 0.2�x40�FWHM3, 10 mil polyester substrate 13 mm x 36 mm
2 80�FWHM, 10 mil polycarbonate substrate 13 mm x 52 mm
3 60�x10�FWHM, 20 mil polycarbonate substrate 13 mm x 52 mm
4 15�x5�FWHM, 10 mil polycarbonate substrate 13 mm x 36 mm
5 30�FWHM, 10 mil polycarbonate substrate 52mm x 52mm

Table 2: Optical Sample Description.

where
d�s is the measured scattered power.
d
 is the solid angle collected by the detector d
 = A

R2

where
A is area of detector
R is distance of detector from sample.

�i is the total incident power
�t is the scattering angle, measured with respect to the surface normal.

The BTDF is the fractional power scattered per unit projected solid angle, so for
a Lambertian scatterer the BTDF is constant. The factor of cos � was noted in the
comparison below.

The following is quoted from the NIST report:
"For each incident angle, scattering angle, wavelength, polarization, and sample

orientation, measurements were performed at six locations on the sample. The reported
values represent the averages and standard deviations of the mean of the measurements.
The observed statistical variation in the data results from laser speckle. No systematic
uncertainties, which are expected to be less than 2 % in magnitude, are included in the
results.
An issue that arose during measurements:
Since these measurements were performed on transmitting samples, a signi�cant

amount of stray light arises from the end of the sample and from the surface mount. Below
are photographs of Sample #1 illuminated from behind at 45�, with and without the room
lights on. The detector views only a small region near the illuminated spot, but some light
can be captured from other re�ections. This effect will be strongest at large viewing angles
and large incident angles."

2.4.1.2 Results

Figure: 5 shows the results for the 60�x10� holographic diffuser (elliptical) when
measured in the 10� direction. The distribution is advertised as Gaussian in the sales
literature with a full width at half maximum of 10�, and a negative parabola would be
expected in the log plot above. This is true until the exit angle (along the horizontal axis)
is larger than 20� due to the stray light at large angles. There is a clear difference between
the samples when measured in the horizontal and vertical directions, and the full width at
half maximum for all samples corresponds with that advertised. Please see Appendix ??

16

Section 2.4 Experiments

Item Description Serial Number
Dolan Jenner Fiber optic illuminator 027026
Dolan Jenner Flat area light
Basler Digital Camera 10920022535
Boom Stand
In�nitube
Mitutoyo 5x In�nity Corrected Objective 378-802-2
Sinusoidal Target (transmission) 51
Micromo Linear Stage controller 16249
Micromo Linear Stage controller
National Aperture Linear Translation Stage 7340
National Aperture Linear Translation Stage
TMC Optical Breadboard 75SSC-113-12
Custom Bracket I
Custom Bracket II

Table 3: Equipment list and serial numbers where avaliable

for the scans of the remaining samples.

2.4.2 Point Spread Function Measurement

2.4.2.1 Equipment Setup

Please see Figure: 7, Figure: 6 for the images and schematics of the experimental setup
respectively. A list of equipment and serial numbers where available are given in Table:
3

2.4.2.2 Method

It took a large amount of effort to get the data acquisition system working correctly. The
�rst challenge was controlling the linear stages via the serial port using MATLAB

R
.

There were two problems here:
The �rst was that the instructions supplied by National ApertureTM with the linear

motion development system, and the example software seemed to indicate that one
controlled the stage using quadrature counts, the basic idea being that a given number
of counts would move the stage a given amount of distance. One assumes the distance
moved should be the same each time and directly proportional to the number of counts.
This didn't prove to be the case, and after much exasperation the stage was used in
velocity mode, that is the controller that was connected to the serial port regulated the
velocity accurately, and the computer was used to track the time. This was calibrated, as
outlined in appendix ??? using the computer and the camera and target. The target was
placed on a glass stage, which was in turn attached to the controller stage. The stage was
sent into motion for two seconds, using the function pause to hold command execution
for this period of time, and its initial and �nal position were recorded in terms of pixels on

17

Chapter 2 Spatial Filtering

the display.
The second issue was the problematic bundled serial port control functions.

Eventually the user contributed library cport was used to send and receive data and the
problems disappeared.
The �nal challenge for positional control was developing the inhouse stagehome

function. This started the stage moving and then using a while loop "listened" for an
external event , actuated by one of the controllers pins going to ground which occurred
when either the:-
1. Bracket attached to the stage hit either a spring loaded panel pin4

2. The copper pad attached to the glass stage contacted the copper pad attached to the
sample as shown in Figure: 6.

The controller then reversed its direction for a couple of seconds and approached the
stage more slowly the second time, and listened for the external event again and stopped.
It took three goes to do the data collection well. The �rst attempt had a list of

target and sample positions which was randomized, and the both the target stage and the
position stage were moved to home between each run. This took a long time, provided no
feedback on the data that was being gathered and the scans were too far apart to be of any
use.
In the �rst repeat the data was collected through a graphical user interface (GUI)

programmed in MATLAB
R
that controlled the camera, the linear stages and reported the

graphed calculated contrast ratio and a representation of the image back to the user in real
time. The user could record a single shot and move both the target and the stage. The GUI
handled storing the contrast ratio, time stamp, image, current target in a data structure.
The contrast ratio at a particular sample position was calculated by using the function
�ndpeaks to return mean maximum and minimum values of the imaged sine function
taken from an array containing the average of the columns of the luminance values of the
image. Unfortunately on this attempt the position in the output data structure was not
recorded.
In the �nal attempt the GUI was retained and the mean contrast ratio over four images

was recorded before moving the sample. A scan button was included to move the sample
across the distance range which could be changed depending on anticipated results, as
there was no use collecting data if the contrast ratio was near unity. The average contrast
ratio was displayed after gathering each data point which provided valuable feedback as to
the status of the experiment. This approach would be recommended for any future work
as it provides lots of feedback as the experiment is progressing, but is not too arduous.
A photograph of the equipment setup is shown in Figure: 6 and a diagram of the

sample mounting and home positioning in Figure: 7.
Before the sample was changed a control run was usually done, to ensure the camera

hadn't moved out of focus or for other defects as well as providing useful reference for
the analysis below. The target stage was leveled using the dial gauge to 0.02 mm in 5mm

4 For those not familier with the cabinet making industry this is a small nail about 6-7mm in length. This
was referred to as a "poor man's contact switch" by the electrical engineers in the building, but performed well
throughout all experiments.

18

Section 2.5 Analysis

of movement. Ambient light was excluded by placing a black cloth over the equipment
whilst running.

2.4.2.3 Results

The results shown in Figure: 9 con�rm what has been known "by eye". The contrast ratio
monotonically decreases as the diffuser is moved further from the target. The contrast
ratio of the target without any intervening diffuser decreases as the spatial frequency
increases, so it is expected that the contrast ratio is different for each target when the
diffuser is very close. It is also noted that the curves are parallel for each target as would
be expected. However the results are disappointing in the sense that one would expect
a clearer trend when comparing between samples: the graphs are trailing off quicker in
general as the as the full width half maximum angle of the diffuser sample increases but
this should also occur monotonically. Both scans of the 60�x10� sample, and the scan in
the 40� direction of the 40�x0.2� sample are anomalous in this respect. These samples
were checked manually with a laser to ensure there was no labeling error. The remaining
possibility is the stage not homing to the correct position, or the camera was bumped
slightly out of focus.

2.5 Analysis
The analysis was performed using seven custom coded MATLAB functions:
1. CompareResults

2. calculateFilter

3. btdfFilter

4. createModelTarget

5. convertData

6. �ndPeaks

7. processing

The process was to �rst calculate the model �lter that expressed what the point spread
function would be for a given spatial �lter and the camera at a given distance.
First the ln(BTDF) was plotted against the incident angle (�) so that the peaks were

centered. The BTDF data was converted into *.mat �les suitable for use by MATLAB
R

by using the process function which extracted the average BTDF �les and the �t angle
and the results were averaged from the red, green and blue laser output. A two degree
polynomial was �tted to the ln(BTDF) curve, where the values that were less than the
full width at half maximum were omitted. The curves were then interpolated between
using the griddata function and a mesh plot over a range of incident and exit angles as
shown in ?? was produced to ensure this was working correctly. According to the model
the resulting point spread function at the sensor may be obtained by following a path on
this graph that is de�ned by the entrance and exit angles in and out of the diffuser. These

19

Chapter 2 Spatial Filtering

were calculated and sent, along with the polynomial coef�cients to the function btdfFilter
to calculate the point spread function, by interpolating between the path at each point to
form the BTDF for the subset of points required. Lastly the point spread function(PSF)
was calculated using the formula speci�ed in the model and the results passed back as an
array as a function of position. Several calculated �lters are shown in 2.4.2.3. These
show the correct behavior in that the irradiance drops as the distance increases and the
distribution wider.
To compare the results obtained with those that were expected from the BTDF

measurements a target was generated to be within the contrast ratio bounds, and with a
ripple of the same spatial frequency of a measured control target. This was then �ltered
using the im�lter function, and resulting contrast ratio was calculated.
The measured contrast ratio was calculated by taking the average luminance of the

columns of the Y5 component of the image. The results were then compared by plotting
the measured and expected contrast ratio functions side by side. The graphs are shown in
Figure: 8.

2.6 Discussion
The spatial �ltering experiments were de�nitely the most dif�cult and time consuming
of the sections work outlined for this author. It took a much more effort than necessary
to get the linear stages working correctly, which could have been saved through good
documentation. It is little disappointing that the author didn't pay more attention when
dealing with the 15� x 5� diffuser sample which was lost prior to doing the �nal round of
experiments.
2.4.2.3 shows the calculated image �lters from the data from NIST and shows the

correct behavior. The spot size increases and the contrast decreases as the image diffuser
distance increases which is exactly as expected.
The contrast decreases as the diffuser display distance increases which was as

expected, however it does not decrease monotonically as the FWHM of the diffuser
increases. This is cause for suspicion that image was out of focus for the 60� x10� sample
as it does not follow this trend. Figure: 8 works reasonably well at relatively large target
distances, where the expected contrast ratio decreases as the diffuser distance increases
and spatial frequency of the target increases. The reason for the for the rounding of the
measured is the mechanical slack in the system, which means that the actual sample does
not begin moving for some distance after the stage begins to move. Also the measured
contrast ratio drops more abruptly at small distances, where as the expected tails off,
probably because of a combination of stray light, the camera noise �oor and the lower
limit to the quantisation.

5 The camera outputs results in the Y,u,v format where Y corrisponds to the luminance, and the gain of the
camera is known to be linear from the manual. This is also con�rmed (up to a limit) in Appendix ??.

20

Section 2.6 Discussion

θt

α

θi

dΦs

Φi (measured
with sample
removed)

dΩ

Aluminum disc

Sample
(rough side

away from disc
and tape)

Illuminated locations

Sample is illuminated from behind and measured in transmission.

Double-sided adhesive tape

Figure 3: Measurment setup and geometry from NIST report

21

Chapter 2 Spatial Filtering

Figure 4: The light scattering problem noted above. One should not be able to see the
sample mounting glass when imaged in a dark room.

22

Section 2.6 Discussion

LSD 60x10 PCS 20 - 2 (Horizontal)

-100 -80 -60 -40 -20 0 20 40 60 80

0.01

0.1

1

Sample 3H

 0° 15° 30° 45°
 442 nm
 532 nm
 633 nm

B
TD

F
(s
r-

1
)

θt (deg)

Figure 5: BTDF results for 60�x10�(10�) holographic diffuser. Note the wide wings on
the bottom due to the scattering problem, which were ommitted during the model �t.

23

Chapter 2 Spatial Filtering

Digital camera

Infinity Corrected Objective Lens

Inifinitube

Vertical Aluminium Bracket

Linear Translation Stage to control the distance
between the sample and the target

Sample Holder

Home Switch, the red lead is connected
to ground and the orange lead is connected

to the controller

Fiber Optic Illuminator

Fiber Optic Area Backlight

MicroMini Motion Controllers

Sinusoidal Target

Target Holder

Linear Translation Stage

Homing Switch, there is a probe that connects
with ground when upon contacting the target

holder.

Sample, fixed with double sided tape

Stages are controlled via the computer using
RS232

Figure 6: Experimental setup.
24

Section 2.6 Discussion

Double Sided Tape

Copper Tape

Diffuser Substrate
Diffuser Surface

Sinusoidal Target

Controller Connector

Sinusoidal Target Movement Direction

Diffuser Stage Movement

Diffuser Stage (2mm glass)

Target Stage (2mm glass)

Infinity Tube

5x Infinity Corrected Objective

Area Illumination

Digital Camera

Figure 7: Schematic view of the experiemental setup showing the optical sample mounting
and homing mechninisim.

25

Chapter 2 Spatial Filtering

-3 -2 -1 0 1 2 3

x 10-3

-2

0

2

4

6

8

10

12

14
Spread Function for 60°x10°(10°) holographic diffuser

Distance across CCD array (m)

Ir
ra

di
an

ce
 (
lu
m
en

s
m

-2
)

0.4

0.8

1.6

1.2

2.0

numbers above graphs indicate diffuser distance in mm

26

Section 2.6 Discussion

0 0.2 0.4 0.6 0.8 1

x 10-3

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

 Contrast Ratio predicted from BTDF

Target - diffuser distance (mm)

Co
nt

ra
st
 R

at
io

0 0.5 1 1.5
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Measured Contrast Ratio

Target - diffuser distance (mm)

Co
nt

ra
st
 R

at
io

Figure 8: The measured (left) and expected (right) contrast ratios

27

Chapter 2 Spatial Filtering

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

5

C
on

tra
st

 R
at

io

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
1
2
3

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

5

0.2x40(0.2)

10x5(5)

60x10(10)

20x20(20)

0.2x40(40)

60x10(60)

80x80(80)

Distance of sample from target (mm)

Figure 9: A comparitive plot of all the contrast ratio measurments.

28

Section 2.6 Discussion

-100 0 100 200
0

0.5

1

1.5

2

2.5

3

BD
TF

Fitted BDTF against alpha

-100

0

100

200

-60

-40

-20

0
-0.5

0

0.5

1

1.5

2

2.5

3

θ°

Interpolated BTDF

α°

B
TD

F

-5 0 5

x 10 -3

0

0.002

0.004

0.006

0.008

0.01

0.012
Calculated Image Filter

Distance across CCD (m)

S
pr

ea
d

fu
nc

tio
n

α°

Figure 10: The analysis process: (a) The BTDF functions were plotted against the deviation
from incident angle � and an exponential �tted to each curve (b) The curves were interpo-
lated and the incident-exitance path is shown plotted for a target-spatial �lter distance of
1mm (c) the curve shown as the predicted irradiance at the CCD array of the camera.

29

Chapter 3
Moire Interference

3.1 Aims

1. To develop a numerical model to predict the saliency of moire interference in a
Multi-layered Displays

2. To verify this model by experiment

3.2 Introduction
Moire interference occurs whenever two regular patterns of slightly different spatial
frequency overlap. It is an example of the beating phenomenon, and Figure: 11 provides
some insight into the mechanism in multi-layered displays. There are two image layers
composed of coloured �lters. The planes are projected onto the retina in perspective and
because the projection of the rear plane is slightly smaller than the projection of the front
plane the layers have a slightly different spatial frequency. This means that a given type of
�lter on one layer will move in and out of phase with the corresponding �lter on the next
layer. When a light ray passes through �lters that are the same, the saturation increases
and the luminance drops slightly which is constructive interference. When light passes
through two �lters that are different, for example red on the �rst layer and blue on the
second then the colour becomes less saturated and the luminance drops by about 80%
resulting in destructive interference.

3.3 Theory and Software Model
To begin the displays are separated into the three different types of colour �lters and
the resulting nine interactions are considered separately and then added in the CIE1931
colour space. The combined transmission spectrums of the sub-pixels are described by24 R1(�)R2(�) R1(�)G2(�) R1(�)B2(�)

G1(�)R2(�) G1(�)G2(�) G1(�)B2(�)
B1(�)R2(�) B1(�)G2(�) B1(�)B2(�)

35 (17)

whose diagonal shows the brightest combinations, because the frequency spectrums
for the same or similar �lters are highly correlated. This can be simpli�ed by measuring
the CIE1931 coordinates, which are L; x; y for each combination and converting to
X;Y; Z coordinates and so a 3� 3� 3 array

[R1G1B1]� [R2G2B2]� [XY Z] (18)

30

Figure 11: Moire interference in multi-layered displays. One observes dark and light bands
if the pixels are in the same order on both layers.

31

Chapter 3 Moire Interference

fully describes the colour interactions fully as far as the visual system is concerned.
In practice each combination can be measured by removing two sets of subpixels (by
making them black) on each layer and recording the tristimulus values. To model the
colour interaction of the interference between the layers, the colour on the rear layer
becomes the combined colour and luminance of the two layers, and the front layer is just
a suitably scaled black mask with apertures. The luminance distribution of the rear layer,
for each different pixel type, is convolved with the normalised version of the digital �lter
calculated in section ?? and multiplied point wise by each of the three masks to determine
the interaction for all combinations.
The sum of all the luminance of all combinations is then taken to predict the �nal

luminance distribution of the interference. These results can also be converted to RGB
coordinates using a 3x3 matrix transform and displayed on the screen to ensure the
qualitative predictions of the model are correct.
The code below shows this process

function Moire = createMoire(R,F,DD,DE,CM,D)
%�������createMoire(R,F,DD,DE,CM)��������-%
%Adds the colours of two images. If the images are of a different size %
%then we take the intersection of the two starting from the top right
%hand corner
%������������-Variables��������-%
% R - the rear image in RGB co-ordinates
% F - is the front image in RGB co-ordinates
% DD - is the distance between the image layers
% DE - is the distance from the front most display to the eye
% CM - is the matrix that describes how the colours interact
%___%
%scale the displays

D1 = DD+DE;
D2 = DE;
FS = imresize(F,(D2/D1));
S_FS=size(FS);
x=1:S_FS(1);
y=1:S_FS(2);

%multiply each layer pointwise - we are trying to �nd where in space each layer interacts
%and at present this is an RGB before hand, but we seperate each of the layers out and
%and interact the red layer of the front screen with the red layer of the rear screen
%for example until we have all nine combinations. Each one of these combinations
%is the luminance distribution for that colour combination

A1=ones(size(FS,1),size(FS,2),3,3,3);

for k=1:3

32

Section 3.3 Theory and Software Model

for m=1:3
A1(:,:,k,m,1) = R(x,y,k) .*FS(:,:,m) * CM(k,m,1);
end
end

%Now for each combination k,l we need to assign CIE co-ordinates
for k=1:3
for m=1:3
A1(:,:,k,m,2) = ones(size(A1,1),size(A1,2))*CM(k,m,2);
A1(:,:,k,m,3) = ones(size(A1,1),size(A1,2))*CM(k,m,3);
end
end

%change to tristimulus values so that we may take the artihmetic sum
for k=1:3
for m=1:3
A2(:,:,k,m,:) = xyL2XYZ(A1(:,:,k,m,:));
end
end

%Go through and add into a single image
A4 = sum(A2,3);
A5 = �ve2threedims(sum(A4,4));
%now change to rgb co-ordinates
A6 = cie2rgb(A5);

%return the CIE tristimulus values
Moire=A5;

3.3.1 Square Root Integral Difference Metric

We have developed a metric to quantify both the theoretical and measured Moire
interfarence, with the aim of providing a measure of the its saliency as it relates to the
human visual system. Barten's square root integral metric (SQRI) is a well established
method to measure image quality and provides a useful starting point. 7 JND's of the
SQRI indicates that a signin�cant amount of distortion is present as far as the viewer is
concerned, and 1 presents distoriton that would be noticed by only half of the population.
Two adaptations need to be made for our purposes. Firstly we are not interested in
frequency components that have been modulated, but rather the difference between the
interference and the ideal �at �eld. Secondly the original metric was designed to act on
the modulation transfer function of a system that transfers an object to an image. So
an arti�cial "object" in the form impulse is chosen as a reference. In discreet terms we
consider both a �at �eld and the measured or calculated Moire as response of the system

33

Chapter 3 Moire Interference

to a single pixel and take the difference of the two. The square root integral is

SQRI =
1

ln 2

Z s
M(u)

mt(u)

du

u
(19)

where
u is the spatial frequency in cycles per degree
uminis the lowest displayed spatial frequency
umaxis the lowest displayed spatial frequency
M(u)is the MTF of the imaging system

mt(u)is the modulation threshold of the eye
and

S(u) =
1

mt(u)
=

5200e�0:0016u
2(1+100=L)0:08q

(1 + 144
X2
o
+ 0:64u2)(63

L0:83 +
1

1�e�0:02u2)
(20)

u is the spatial frequency in cycles per degree
L is the average luminance in cd=m2
Xo is the angular object size in degrees

and the corrisponding code is
%����SQRI(Luminance,testImage,referenceImage_0,X,Y)����-%
%gareth.bell@deepvideo.com
%
%Calculate the square root integral metric for a viewing distance of
%570mm given a reference and a distorted image.
%������������-Variables��������-%
%
% testImage - The image to be compared
% referenceImage - The reference image
% X - The size of the image in the x direction in mm
% Y - The size of the image in the y direction in mm
%������������Notes����������-%
%See Quality Aspects of Computer based Video Services for details
%Major revision and simpli�cation given Peter Barten's presentation pg 27
%___%

VIEWING_DISTANCE = 570; %Standard viewing distance

% Find the size of the image
[nPixels, mPixels] = size(referenceImage);

%Convert the input size into degrees assuming viewing distance of 570mm
thetaX = atan(X / VIEWING_DISTANCE) * 180/ pi;
thetaY = atan(Y / VIEWING_DISTANCE) * 180/ pi;

%Calculate the size of the increments

34

Section 3.3 Theory and Software Model

deltaU = 1 / thetaX;
deltaV = 1 / thetaY;

%Do the fast fourior transforms of both images
F_testImage = fft2(testImage);
F_referenceImage = fft2(referenceImage);

%Find the modulation transfer function
mtf = abs(F_testImage ./ F_referenceImage);

%We need to create a grid of u and v values
[U, V] = meshgrid([deltaU:deltaU:(mPixels * deltaU)] , [deltaV:deltaV:(nPixels * deltaV)]);
%Calculate the frequency into the 1D Contrast sensitivity function
frequency = sqrt(U .^2 + V .^2);

%Calculate the contrast sensitivity function
localCsf = csf(frequency, Luminance, thetaX, thetaY);

%This needs to be integrated over a log grid
logGrid = 1 ./ (U .^2 + V .^2);

%Calculate the �nal integral
I = 1./(2 * pi * log(2))...
* sum(sum(sqrt(mtf .* localCsf) .* logGrid * deltaU * deltaV));

And the adapted difference metric in two dimensions is

�SQRI =
1

2� ln 2

"s
Mtest

mt(u)
�

s
M0

mt(u)

#
dudvp
u2 + v2

(21)

where

Mtest =

����F(Itest=Itest)F(�)

���� (22)

and

M0 =

����F(1)F(�)

���� (23)
%�������out = moire(testImage,nullImage,X,Y)�����%
%calculates the square root integral of the moire interfarence present
%������������-Variables��������-%
% testImage - rgb image with moire interfarence present
% nullImage - image using same camera on �at �eld of same luminance
% X - size of the image in the x direction in millimeters
% Y - size of the image in the y direction in millimeters

testYuv = mean(testImage);

35

Chapter 3 Moire Interference

nullYuv = mean(nullImage);

test = mean(mean(testYuv(:,:,2)));
null = mean(mean(nullYuv(:,:,2)));

normalisedTest = (testYuv(:,:,2)/test);
normalisedNull = (nullYuv(:,:,2)/null);

impulse = zeros(size(testYuv(:,:,2)));
impulse(1,1) =1;

moireSqri = sqri(luminance,normalisedTest,impulse,X,Y);
nullSqri = sqri(luminance,normalisedNull,impulse,X,Y);

out = moireSqri - nullSqri;

3.4 Method

3.4.1 Cutting the display samples

The two display samples, about 50mm x 50mm were cut from waste panels. The �rst step
is to remove the polariser and the compensation layer from both sides of the panel which
takes considerable force. A line was then scribed6 on the glass of both sides of the panel
around the glue line and the border of the panel was nibbled off using pliers. This leaves
a sandwich of glass containing liquid crystal which can be separated leaving the colour
�lter side only. The samples are then scribed and cut from this.
Once the piece of glass is cut it was mounted on an adjustable block on the bottom of

the stage. The angle that the pixels on the �rst piece of glass relative to the second piece
can be adjusted by turning the screws to control their relative height. These were adjusted
so that the interference appeared vertical with respect to the display on the video camera.
7

3.4.2 Collecting the Data

The experiment consisted of varying the distance between the �rst display sample, and

6 The glass cutting proved rather dif�cult, because glass is too thin to cut with a standard hardended steel
glass cutter. A certain amount of pressure has to be applied to form the required grove in the glass, however
display glass is much thinner than window glass and breaks before reaching this pressure. The �nal solution
was to use a small carbide grinding wheel, held in ones hands and moved along a streight edge, to impart a
scratch on glass and then use pliers or �ngers to break along the line. This method would suggest the use of a
small diamond scriber in the future to score the glass.
7 A video camera seemed to provide the best moire resutls - initially I tried collecting the data using the
Basler using a video lens, but I couldn't seem to get any contrast in the fringes even after taking the exponential
of the values.

36

Section 3.4 Method

Double Sided Tape

Copper Tape

Pixel Pattern

Controller Connector
Diffuser Stage Movement

Diffuser Stage (2mm glass)

Area Illumination

Video Camera

Display Glass Substrate

Display Glass Substrate

Figure 12: Experimental setup for Moire measurment. This time two vertical linear stages
were used to control the distance between the displays and the distance of the diffuser from
the rear display.

37

Chapter 3 Moire Interference

Figure 13: Moire Measurement GUI

each of 5 diffuser samples listed in Table: 2, from touching to 2mm increments of about
0.02mm; changing the distance between the display samples in increments of 5mm, and
then varying the diffuser distance through its range again. The apparatus is shown in
Figure: 12 The data was collected through a graphical user interface (GUI) programmed
in MATLAB

R
that controlled the camera, the linear stages and reported the graphed

calculated Square Root Integral(SQRI) Vs. the diffuser distance and a representation of
the image back to the user in real time. The user could record a single shot and move
both the second display sample and the stage. The results were gathered "manually",
in the sense that four or �ve images were taken with the diffuser at each distance, then
the next distance was chosen by moving the slider. The GUI handled storing the SQRI
difference metric, time stamp, image, and current distance between the display samples in
a structure. The distance between the display samples was picked using the radio buttons.
The video camera was set to auto-focus and the exposure was �xed, with a visual check
ensuring that it was focussing on the Moire interference.
Even though the problems with the positioning equipment had been ironed out in the

previous experiment there were still some issues and mistakes made in the process. The
sample glass breaks easily, which happened at least once and a new piece had to be cut.

38

Section 3.6 Discussion

Also keeping the bottom display sample in-line proved somewhat dif�cult since the spring
provided rotation, however also allowed unwanted vertical and lateral movement. The
�rst video camera used could not be kept on for an inde�nite amount of time in video
mode and failed during the experiment setup and a replacement had to be hired. On the
�rst attempt to get the trial working a two pairs of wires and contacts were needed to
provide home points for both the diffuser and the top display which proved impossible to
get to work correctly. To simplify the situation, the front sample was moved differentially
between positions, rather than returning to a home point between each run. A faint image
of the two screws showed up in the �nal image which turned out to be a mixed blessing:
one would expect a small effect on the �nal results, but on the other hand, because the
distance between the two screws was known it was possible to determine the camera
magni�cation, which was unobtainable otherwise.

3.5 Analysis and Results

Figure: 15 shows the predicted results for the modelled moire interference. Note that the
graphs abruptly bottom out and in some cases start to rise back up at the end, probably due
to the numerical limitations of the model, which unfortunately makes it dif�cult to �nd
the minimum SQRI difference metric for any given display type. This could possibly be
improved by using a �ner points for the model, however this consumes a lot of computer
memory and could not be calculated on a PC in the time given. . The Square Root integral
gets smaller as the distance between the modelled display panels increases. The Square
Root Integral Difference compared the model image with moire interference present to a
�at image with uniform luminance.
?? shows the an image of the predicted and measured moire interference. There is

good agreement in terms of the colours and their relative pixel positions.
Figure: 15 shows the metric value for the modelled moire interference. Note that

the metric abruptly bottoms out and in some cases start to rise back up at the end. The
maximum value of the metric increases as the distance between the displays increases.
?? shows the metric value for the measured moire interference. There is a lot of noise

in the data, which continues to increase as the distance between the displays increases.
The metric bottoms out at a value of around 5, and decreases both as the distance between
the diffuser increases and as the distance between the displays increases.

3.6 Discussion
The match between the measured moire interference and the predicted moire interference
is quite striking in terms of both the colour and the position of the fringes. The metric
calculated using the predicted moire interference and spatial �lter behaves as expected
for small distances of the diffuser: it declines as the distance from the diffuser to the rear
display increases and decreases as the distance between the displays increases. However
there is some strange behavior for as the diffuser display distance starts increasing beyond
0.5 mm. The metric rapidly �attens out and for some distances between the displays even

39

Chapter 3 Moire Interference

Pixels in x direct ion
500 1000 1500 2000 2500

5

10

15

20

25

50 100 150 200 250 300 350

50

100

150

200

250

Predicted Moire Interfarence Pattern

 Measured Moire Interference Pattern

Pixels in x direct ion

P
ix

el
s
in

 y
 d

ir
ec

tio
n

P
ix

el
s
in

 y
 d

ir
ec

tio
n

Figure 14: Predicted (top) and measured (bottom) Moire interference

40

Section 3.6 Discussion

0 1 2
0

2

4

6

8

10

12

14

16

18

20
10

0 1 2
0

2

4

6

8

10

12

14

16

18

20
15

0 1 2
0

2

4

6

8

10

12

14

16

18

20
20

0 1 2
0

2

4

6

8

10

12

14

16

18

20
25

0 1 2
0

2

4

6

8

10

12

14

16

18

20
30

0 1 2
0

2

4

6

8

10

12

14

16

18

20
35

S
Q
R
I
D
if
fe

rn
ce
 (
JN

D
)

Distance of Diffuser from Display (mm)

SQRI Vs. diffuser [60°x10°(10°)] distance and distance between displays for modelled moire inteferenceDistance between displays

Figure 15: The predicted SQRI for the moire interference component of the image. Note
the rapid �attening out of the graphs at bottom where the integral breaks down.

41

Chapter 3 Moire Interference

0 1 2
4.5

5

5.5

6

6.5

7

7.5

0 1 2
4.5

5

5.5

6

6.5

7

7.5

0 0.5 1
4.5

5

5.5

6

6.5

7

7.5

0 1 2
4.5

5

5.5

6

6.5

7

7.5

0 1 2
4.5

5

5.5

6

6.5

7

7.5

0 1 2
4.5

5

5.5

6

6.5

7

7.5

Distance of Diffuser from Display (mm)

SQ
RI

 D
iff

er
en

ce
 (
JN

D
)

Distance between displays
SQRI Vs. diffuser [60°x10°(10°)] distance

10 15 20 25 30 35

Figure 16: The Square Root Integral values of the Measured Images

42

Section 3.6 Discussion

begins to increase, which was not expected. Given that there is no pattern to this portion
of the results one suspects the numerical model breaks down as the contrast begins to get
very low, perhaps a �ner grid would help to offset this. Because of this fact it is very
dif�cult to tell what the distance is going to be for the zero crossing - if the true metric
continues to fall a this rate then the zero crossing for most would most likely occur at
about 1 mm. However if the true metric �attened out in a Gaussian like manner, as shown
in the measured values, and which is likely given the nature of the spatial �ltering, then it
is likely that this zero crossing value could be as high as 2mm.
The metric calculated using the measured moire interference and the spatial �lter is

taken from very noisy data due to having to use a cheap camera, however there are some
very clear features emerging here. In this case it is very dif�cult to measure the metric
when the distance between the panels gets very large, from the graphs it is quite clear
that the relationship between diffuser distance and the value of the metric is nonexistent
when the panels are about 35mm apart, rather the points are just spread around about the
bottom value. There is a strong case here for increasing the distance between the displays
in the commercial monitor in the absence of other limiting factors. The metric value also
bottoms out at about 5 JND's, which is probably due to the cos4(x) fall off of the video
lens. Given more time one could �t a polynomial surface to the image to account for
this. The camera also has a terrible signal to noise ratio which is apparent when viewing
mesh plots of the images, which would account for such noisy data. There is quite a
difference in both the top and bottom values for the measured and expected values of
the metric. This is probably due to not taking the luminance response of the camera into
account fully, where the exponential of the mean luminance channel was used here to go
some what towards addressing this issue. Of course one could calibrate the camera given
suf�cient time.

43

Chapter 4
Image Quality Survey

4.1 Objective
To determine the subjective image quality of a multi-layered display as a function of the
distance to the diffuser to the rear image plane in terms of the moire interference, the
quality of the rear image layer and the over-all impression of the over all image quality

4.2 Experimental Setup and Method
A prototype module Figure: 17 was constructed where the distance between the display
layers, and the distance between the diffuser and the rear display could be adjusted.
Potentially the distance between the two display layers which were two 15" �at panel
displays, could be adjusted but it was decided to leave this set at 10mm. Unfortunately,
because of time constraints a diffuser sheet out of a backlight was used, it would have
been preferable to get a large sheet of holographic diffuser made up on a thin substrate.
Because the front panel is only about 10% transmissive a high-brightened rear panel was
used to provide enough light. Both sets of components that were to be moved were then
mounted on drawer runners. Each of these subassemblies was mounted on the inside
of a black enclosure. Linear stages were attached on the bottom of the enclosure and
connected to the optical assemblies to provide the controlled movement. Micro switches
were mounted on the inside of the enclosure, which, when contacted by the display
layers, grounded a pin on the stage controllers triggering an external event which that the
signaled that optical components were in the home position.
The apparatus was set-up in a shopping mall and the participants were given chocolate

bars for their involvement. A GUI was also developed that provided a set of instructions,
moved the stages, displayed an interface and underlying code that for collecting the
responses. The participants were tested for colour blindness and 20/20 vision and
were seated approximately 1-1.5 meters from the display. The GUI provided a small
presentation on the two extremes of image quality by showing examples of a very blurry
rear display Figure: 18 (bottom right) and Figure: 19 (3); with no moire present and a
very clear rear display with a lot of moire present Figure: 18(bottom left) and Figure: 18
(2). A printer test photo shown in Figure: 20 below, contained a lot of �ne detail and was
placed as wall paper and used as a test image. Participants were instructed to note the �ne
detail in both this and the words and icons that were present on the desktop. The last
section of the presentation consisted of three sliders where the participants supplied on a
continuous scale their overall impression of image quality. The author and an assistant
took turns at recruiting potential subjects and guiding them through the each of the trials.

44

Linear translation st

Front display

 Spatial Filter Sub Assembly

Front display Sub Assembly

Figure 17: The apparatus designed and used in the image survey. Note in the actual survey
there was a black insert that covered all the mechanical components.

45

Chapter 4 Image Quality Survey

Figure 18: Schematic showing the setup of the experimental design

4.3 Results
The scatter plot in Figure: 21 shows the variance in image quality aspects, there is quite a
wide distribution in the responses and from here one gets the sense that the image quality
is mainly dependent on the clarity of the rear display.
The plot in Figure: 22 shows the averaged image quality aspects, where the error bars

indicate the 95% con�dence interval. It is clear here that the overall image quality follows
the image clarity of the rear display.

4.4 Discussion
It is disappointing that the BTDF of the diffuser wasn't known means the models
described in the previous sections cannot be referenced, and time has run out to measure
the Moire interference and image clarity in the artefact which would be acceptable and
included in a addendum to this report. However there is still useful information. The
Moire interference is less salient to the general population than �rst expected and it
appears the overall image quality is largely dependent on the clarity of the rear screen, so
in terms of this trade-off one would lean towards making the image clearer at design time.
The variance in the results between subjects was not unexpected, and one wonders

whether it may be better to use a threshold type experiment in the future to compare
distances in the image quality which are the units in the square root integral difference
metric. There are also some powerful statistical techniques to deal with this type of
experiment, although it would take a lot of time to conduct since one needs a lot of
subjects to de�ne a level.

46

Section 4.4 Discussion

(1)

(2)

(3)

(4)

Figure 19: The graphcical user interface elements used in the survey.

47

Chapter 4 Image Quality Survey

Figure 20: Printer test photo dipslayed on screean and used for image quality survey.

48

Section 4.4 Discussion

3 4 5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Moire interference quality

Distance from diffuser to display (mm)

Su
bj
ec

tiv
e

Im
ag

e
Q
ua

lit
y

3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Image Clarity

Distance from diffuser to display (mm)

Su
bj
ec

tiv
e

Im
ag

e
Q
ua

lit
y

3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Overall Image quality

Distance from diffuser to display (mm)

Su
bj
ec

tiv
e

Im
ag

e
Q
ua

lit
y

Figure 21: Scatter plot showing aspects of the subjective image quality

49

Chapter 4 Image Quality Survey

3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Moire Interference

Distance of Diffuser from Rear Display (mm)

Su
bj
ec

tiv
e

Im
ag

e
Q
ua

lit
y

3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Image Clarity

Distance of Diffuser from Rear Display (mm)

Su
bj
ec

tiv
e

Im
ag

e
Q
ua

lit
y

3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Distance of Diffuser from Rear Display (mm)

Su
bj
ec

tiv
e

Im
ag

e
Q
ua

lit
y

Overall Quality

Figure 22: The average over the image quality sample. The error bars corrispond to the
95% con�dence intervil.

50

Chapter 5
Conclusions
The Spatial �ltering model is accurate to within an order of magnitude, in that it shows
the correct behavior as the distance between the diffuser and the display increases and as
the FWHM of the diffuser changes, however the result would bene�t from some more
careful experimental study. Time has run out Square Root Integral Metric with regard
to the spatial �lter, which is a very important component of this work. However this
should not be dif�cult to calculate and will be completed in an addendum. The important
information gained from this work is a sense of how tight the tolerance on the distance
parameter is and this will be incorporated into the engineering knowledge base at Deep
Video Imaging Ltd.
The Moire interference model works well in the sense that it predicts the colours

and pitch of the interference fringes correctly. However this quantity is very dif�cult to
measure well with a camera, it was almost impossible to detect on the expensive Basler
which had a low signal to noise ratio in comparison to the consumer video camera that
was eventually used. It is not understood as to why this should be the case, however one
suspects this is because of the strong chromatic component to the fringes. In the future
a better approach may be to use a calibrated, possible cooled, monochromatic camera to
sample the fringes, where the subpixels would in the same direction on both displays
which would produce monochromatic interference.
The Moire interference metric clearly needs more work. The measured results are

very noisy, and logically the 1D Square Root integral should be used here instead of the
2D Square Root integral on the mean contrast ratio of the images, even though the former
produced better results. There will be more work done over the next few months as part
of the engineering effort, where a more practical approach to making these measurements
will be investigated.
The importance of the clarity of the rear display image over the in the survey result

was surprising and will be interesting to compare its contribution to the metric once the
Square Root Integral of the spatial �lter is measured.
Overall the project was ambitious in terms of the expected time frame, however given

the importance of the measurements to a lot of approaches to 3D which still suffer the
Moire interference problem, it would be worth the effort to polish the work further.

51

Appendix A
Spatial Filtering

5.1 Gatherdata Code
function varargout = GatherData(varargin)

% GATHERDATA M-�le for GatherData.�g
% GATHERDATA, by itself, creates a new GATHERDATA or raises the existing
% singleton*.
% Last Modi�ed by GUIDE v2.5 20-Sep-2003 18:03:26
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', m�lename, ...
'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @GatherData_OpeningFcn, ...
'gui_OutputFcn', @GatherData_OutputFcn, ...
'gui_LayoutFcn', [] , ...
'gui_Callback', []);
if nargin & isstr(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
%� Executes just before GatherData is made visible.
function GatherData_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to �gure
% eventdata reserved - to be de�ned in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to GatherData (see VARARGIN)
% Choose default command line output for GatherData
handles.output = hObject;
%=========================CONFIGURATION=========================
%External Functions used:
%movestage
%��������������������-
% Output Structure - handles.output.[]

52

Section A.1 Gatherdata Code

% e.g. - handles.ouput.Date

%��������������������-
% .date (time stamp)
% .image (image matrix)
% .target (Target Type): element of [2 4 6 8 10 12]
% .contrastRatio (Contrast ratio value): 0 < CR < 1
% .distance (Distance from stage to home in mm)
handles.contrast = cell(8,1);
handles.output = struct([]);
%��������������������-
% Temporary internal variables - handles.int.[]
%��������������������-
handles.int.s1 =0; %(Distance from home of stage 1)
handles.int.s2 =0; %(Distance from home of stage 2)
handles.int.serialID = cportopen('com2');
% .currentTarget %(The current target)
handles.int.index = 1; %(Current index into the strucuture, iterates when an image is taken)
set(handles.radiobutton1,'Value',1);
handles.int.button = 1;

X = 7.5/84*[0 27 41.5 55.5 62.8 69.5 76.5 84];
handles.int.TARGET = X(1:(length(X)-1));
%��������������������-
%Notes
% Update handles structure
guidata(hObject, handles);
% UIWAIT makes GatherData wait for user response (see UIRESUME)
uiwait(handles.�gure1);
% � Outputs from this function are returned to the command line.
function varargout = GatherData_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to �gure
% eventdata reserved - to be de�ned in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Get default command line output from handles structure
varargout{1} = handles.output;
%��������������������-
%GET IMAGE CODE����������������
%��������������������-
%� Executes on button press in GetImage.
function GetImage_Callback(hObject, eventdata, handles)
%Set image limits
IMAGE_X_MIN = 70;
IMAGE_X_MAX = 480;
IMAGE_Y_MIN = 1;

53

Appendix A Spatial Filtering

%Select the viewing window
switch handles.int.button
case {1}
IMAGE_Y_MAX = 640;
case {2,3}
IMAGE_Y_MAX = 620;
case {4,5,6}
IMAGE_Y_MAX = 300;
end
%Get and store the picture
tempIndex = handles.int.index;
x = zeros(1,5);
for i = 1:5
tempImage = get_yuv;
x(i) = contrastRatio(tempImage);
end
CR = mean(x)
handles.output(tempIndex).image = (tempImage);
handles.output(tempIndex).date = clock;
handles.output(tempIndex).currentTarget = handles.int.button;
handles.output(tempIndex).keep = 1;
% Calculate and store the contrast ratio
tempImage = handles.output(tempIndex).image(IMAGE_Y_MIN:IMAGE_Y_MAX,IMAGE_X_MIN:IMAGE_X_MAX);
handles.contrast{handles.int.button,1} = [handles.contrast{handles.int.button,1};[get(handles.Slider,'Value'),CR]]
handles.output(tempIndex).CR = [get(handles.Slider,'Value'),CR];
hold on
axes([handles.axes1]) % Select the proper axes
cla
%Plot the contrast ratio
set(handles.axes1,'XLim',[0 2]);
set(handles.axes1,'Units','centimeters')
set(handles.axes1,'Position',[1.295 9.994 13.246 7.244])
set(handles.axes1,'NextPlot','add')
markers = '.ox+*s';
for i = 1:8
if ~isempty(handles.contrast{i,1})
h = line(handles.contrast{i,1}(:,1),handles.contrast{i,1}(:,2));
set(h,'Marker',markers(i))
end
end
handles.int.currentLine = h;
%Write the image
axes([handles.axes2])
cla
imagesc(tempImage')

54

Section A.1 Gatherdata Code

%Update the index
handles.int.index = handles.int.index + 1;
% Update handles structure
guidata(hObject, handles);
%�����������������
%� Executes on button press in Undo.
function Undo_Callback(hObject, eventdata, handles)
%Needs �eshing out after doing movement code
tempIndex = handles.int.index - 1
%Set the keep value to zero
handles.output(tempIndex).keep = 0;
%Remove the previous point and replot
handles
[len,x] = size(handles.contrast{handles.int.button,1})
len = len -1;
if len==0
handles.contrast{handles.int.button,1} =[]
axes([handles.axes2])
cla
end
if len~=0
handles.contrast{handles.int.button,1} = [handles.contrast{handles.int.button,1}(1:len,:)]
end
markers = ['.ox+*s'];
axes([handles.axes1]); % Select the proper axes
cla;
for i = 1:8
if ~isempty(handles.contrast{i,1})
h = line(handles.contrast{i,1}(:,1),handles.contrast{i,1}(:,2));
set(h,'Marker',markers(i));
end
end
handles.int.index = tempIndex;
guidata(hObject, handles);
%������������������������-
%MOVE 1 CODE���������������������
%OK
%������������������������-
%� Executes on button press in radiobutton1.
function radiobutton1_Callback(hObject, eventdata, handles)
handles.int.button = 1;
off = [handles.radiobutton2,handles.radiobutton3,handles.radiobutton4,...
handles.radiobutton5,handles.radiobutton6];
mutual_exclude(off)
% Update handles structure

55

Appendix A Spatial Filtering

guidata(hObject, handles);
% � Executes on button press in radiobutton2.
function radiobutton2_Callback(hObject, eventdata, handles)
handles.int.button = 2;
off = [handles.radiobutton1,handles.radiobutton3,handles.radiobutton4,...
handles.radiobutton5,handles.radiobutton6];
mutual_exclude(off)
% Update handles structure
guidata(hObject, handles);
% � Executes on button press in radiobutton3.
function radiobutton3_Callback(hObject, eventdata, handles)
handles.int.button = 3;
off = [handles.radiobutton1,handles.radiobutton2,handles.radiobutton4,...
handles.radiobutton5,handles.radiobutton6];
mutual_exclude(off)
% Update handles structure
guidata(hObject, handles);
% � Executes on button press in radiobutton4.
function radiobutton4_Callback(hObject, eventdata, handles)
handles.int.button = 4;
off = [handles.radiobutton1,handles.radiobutton2,handles.radiobutton3,...
handles.radiobutton5,handles.radiobutton6];
mutual_exclude(off)
% Update handles structure
guidata(hObject, handles);
% � Executes on button press in radiobutton5.
function radiobutton5_Callback(hObject, eventdata, handles)
handles.int.button = 5;
off = [handles.radiobutton1,handles.radiobutton2,handles.radiobutton3,...
handles.radiobutton4,handles.radiobutton6];
mutual_exclude(off)
% Update handles structure
guidata(hObject, handles);
% � Executes on button press in radiobutton6.
function radiobutton6_Callback(hObject, eventdata, handles)
handles.int.button = 6;
off = [handles.radiobutton1,handles.radiobutton2,handles.radiobutton3,...
handles.radiobutton4,handles.radiobutton5];
mutual_exclude(off)
% Update handles structure
guidata(hObject, handles);
%�������������������������
%� Executes on button press in Home1.
function Home1_Callback(hObject, eventdata, handles)
set(handles.Moving1,'String','Moving.....')

56

Section A.1 Gatherdata Code

stagehome(handles.int.serialID,1,1)
set(handles.Moving1,'String',' ')
off = [handles.radiobutton1,handles.radiobutton2,handles.radiobutton3,...
handles.radiobutton4,handles.radiobutton5,handles.radiobutton6];
handles.int.button = 1;
mutual_exclude(off)
set(handles.radiobutton1,'Value',1);
handles.int.s1 = 0;
% Update handles structure
guidata(hObject, handles);
% � Executes on button press in Move1.���������-
function Move1_Callback(hObject, eventdata, handles)
targetValue = handles.int.button;
moveStageDelta(handles.int.s1,handles.int.TARGET(targetValue),1,handles)
handles.int.s1 = handles.int.TARGET(targetValue);
guidata(hObject, handles);
%������������������������-
%MOVE 2 CODE���������������������
%In Testing
%������������������������-
function Slider_Callback(hObject, eventdata, handles)
% � Executes on button press in Move2.
function Move2_Callback(hObject, eventdata, handles)
moveStageDelta(handles.int.s2,get(handles.Slider,'Value'),2,handles)
handles.int.s2 = get(handles.Slider,'Value');
% Update handles structure
guidata(hObject, handles);
% � Executes during object creation, after setting all properties.
function Slider_CreateFcn(hObject, eventdata, handles)
% Hint: slider controls usually have a light gray background, change
% 'usewhitebg' to 0 to use default. See ISPC and COMPUTER.
usewhitebg = 1;
if usewhitebg
set(hObject,'BackgroundColor',[.9 .9 .9]);
else
set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end
% � Executes on button press in Home2.
function Home2_Callback(hObject, eventdata, handles)
%Move the stage home and let the user know it is moving
set(handles.Moving2,'String','Moving.....')
stagehome(handles.int.serialID,2,-1)
set(handles.Moving2,'String',' ')
%Set the slider to the home position
set(handles.Slider,'Value',0);

57

Appendix A Spatial Filtering

%Update the tracking value
handles.int.s2 = 0;
% Update handles structure
guidata(hObject, handles);
%ADMINISTRATION CODE����������������
%� Executes during object creation, after setting all properties.
function SampleName_CreateFcn(hObject, eventdata, handles)
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
set(hObject,'BackgroundColor','white');
else
set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end
function SampleName_Callback(hObject, eventdata, handles)
% Hints: get(hObject,'String') returns contents of SampleName as text
% str2double(get(hObject,'String')) returns contents of SampleName as a double
% � Executes on button press in Finished.
function Finished_Callback(hObject, eventdata, handles)
cportclose(handles.int.serialID)
guidata(hObject, handles);
% UIWAIT makes GatherData wait for user response (see UIRESUME)
uiresume(handles.�gure1);
%����������������������-
%SUB FUNCTIONS
%����������������������-
%����������������������-
function moveStageDelta(presentPosition, �nalPosition, button, handles)
switch button
case 1
%Make sure the push-button stays down
set(handles.Move1,'Value',0);
%Tell the user the stage is moving
set(handles.Moving1,'String','Moving.....');
%Move the stage
moveStage(handles.int.serialID,1,-(�nalPosition-presentPosition));
%Delete the 'Moving' text
set(handles.Moving1,'String',' ');
% Bring the button back up
set(handles.Move1,'Value',1);

case 2
%Make sure the push-button stays down
set(handles.Move2,'Value',0);
%Tell the user the stage is moving

58

Section A.1 Gatherdata Code

set(handles.Moving2,'String','Moving.....');
%Move the stage
moveStage(handles.int.serialID,2,(�nalPosition-presentPosition));
%Delete the 'Moving' text
set(handles.Moving2,'String',' ');
% Bring the button back up
set(handles.Move2,'Value',1);
end

%�������������������������
function mutual_exclude(off)
set(off,'Value',0);
%�������������������������
%Scan Data
% � Executes on button press in pushbutton8.
function pushbutton8_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton8 (see GCBO)
% eventdata reserved - to be de�ned in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
nSamples = 50
for i = 1 : nSamples + 1

%Set image limits
IMAGE_X_MIN = 70;
IMAGE_X_MAX = 480;
IMAGE_Y_MIN = 1;

%Select the viewing window

switch handles.int.button
case {1}
IMAGE_Y_MAX = 640;
case {2,3}
IMAGE_Y_MAX = 620;
case {4,5,6}
IMAGE_Y_MAX = 300;
end

%Get and store the picture
tempIndex = handles.int.index;

x = zeros(1,5);
for i = 1:5
tempImage = get_yuv;
x(i) = contrastRatio(tempImage);

59

Appendix A Spatial Filtering

end

CR = mean(x)

handles.output(tempIndex).image = (tempImage);
handles.output(tempIndex).date = clock;
handles.output(tempIndex).currentTarget = handles.int.button;
handles.output(tempIndex).keep = 1;

% Calculate and store the contrast ratio
tempImage = handles.output(tempIndex).image(IMAGE_Y_MIN:IMAGE_Y_MAX,IMAGE_X_MIN:IMAGE_X_MAX);
handles.contrast{handles.int.button,1} = [handles.contrast{handles.int.button,1};[get(handles.Slider,'Value'),CR]]
handles.output(tempIndex).CR = [get(handles.Slider,'Value'),CR];

hold on
axes([handles.axes1]) % Select the proper axes
cla

%Plot the contrast ratio
set(handles.axes1,'XLim',[0 2]);
set(handles.axes1,'Units','centimeters')
set(handles.axes1,'Position',[1.295 9.994 13.246 7.244])
set(handles.axes1,'NextPlot','add')

markers = '.ox+*s';

for i = 1:8
if ~isempty(handles.contrast{i,1})
h = line(handles.contrast{i,1}(:,1),handles.contrast{i,1}(:,2));
set(h,'Marker',markers(i))
end
end

handles.int.currentLine = h;

%Write the image
axes([handles.axes2])
cla
imagesc(tempImage')

%Update the index
handles.int.index = handles.int.index + 1;
%Move the stage
movestage(handles.int.serialID,2,(2/nSamples))

60

Section A.3 Stagehome Code

%Update the slider
x = get(handles.Slider,'Value');
set(handles.Slider,'Value',(x + (2/nSamples)))
end
% Update handles structure
guidata(hObject, handles);
beep

5.2 Movestage Code
function moveStage(serial_id,node,x)

%������moveStage(serial_id,node,x)���������%
%Moves stage x millimeters
%����������-Variables����������-%
%serial_id - Structure generated by serial function in MATLAB
%node - The number of the controller being used 1,2,3,4 etc
%x - Distance in millimeters that the stage needs to be moved. +ve is
% towards motor end of controller
%������������������������%
% Gareth Bell <gareth.bell@deepvideo.com> %
% Date Created 13/05/03 %
% Date Last Edited 9/06/03 %
% Revision 2.0 %
%������������Notes����������-%
%Extensively reworked after using velocity rather than position mode
%___%
F = 5.644e-3; %Fudge factor
if x~=0
v = sign(x)*30 %Velocity
t = abs(x)/(abs(v)*F) %Calculated time
cportwrite(serial_id,sprintf('%1.0f V %1.0f',node,v),'CR')
pause(t)
cportwrite(serial_id,sprintf('%1.0f V %1.0f',node,0),'CR')
else
cportwrite(serial_id,sprintf('%1.0f V %1.0f',node,0),'CR')
end

5.3 Stagehome Code
%������moveStage(serial_id,node,direction)���������%

%Moves stage to home hardstop
%������������-Variables��������-%
%serial_id - Structure generated by serial function in MATLAB

61

Appendix A Spatial Filtering

%node - The number of the controller being used 1,2,3,4 etc
% - -1 or 1
% Positive is towards motor end of controller, can be negetive
%
%������������������������%
% Gareth Bell <gareth.bell@deepvideo.com> %
% Date Created 5/06/03 %
% Date Last Edited 7/06/03 %
% Revision 1.0 %
%������������Notes����������-%
%___%

function stageHome(serial_id,node,direction)

%check for bad input
if abs(direction)>1
direction=sign(direction)
warning('direction should be 1 or -1')
end

%Check to see if home already
status = 0;
cportreset(serial_id)

cportwrite(serial_id,sprintf('%1.0f ST',node),'CR');
pause(0.1)
status = cportgetchar(serial_id,13)
if (bitand(hex2dec(status(7:11)),4096))
error('!!!!!!!!!Already Home!!!!!!!!!!!')
end

%Seek home position
cportwrite(serial_id,sprintf('%1.0f V %1.0f',node,(direction*20)),'CR')
status = 0;
cportreset(serial_id)
while (sum(size(status))~=14)j~(bitand(hex2dec(status(7:11)),4096))
cportwrite(serial_id,sprintf('%1.0f ST',node),'CR');
pause(0.1)
status = cportgetchar(serial_id,13);
fprintf('j')
end

%Back off for a second
cportwrite(serial_id,sprintf('%1.0f V %1.0f',node,(direction*-20)),'CR')

62

Section A.5 btdfFilter Code

pause(1)
cportwrite(serial_id,sprintf('%1.0f V %1.0f',node,0),'CR')

%Re-seek but this time slower for more accuracy
pause(0.5)
cportwrite(serial_id,sprintf('%1.0f V %1.0f',node,(direction*2)),'CR')
status = 0;
cportreset(serial_id)
while (sum(size(status))~=14)j~(bitand(hex2dec(status(7:11)),4096))
cportwrite(serial_id,sprintf('%1.0f ST',node),'CR');
status = cportgetchar(serial_id,13);
pause(0.1)
fprintf('+')
end
cportwrite(serial_id,sprintf('%1.0f V %1.0f',node,0),'CR')

%De�ne this point as home
cportwrite(serial_id,'1 HOME','CR')
fprintf('*')

5.4 get_yuv Code
%[y,u,v] = get_yuv()

%
% Capture an image from the camera, and return Y,U and V color
% components as seperate 640x480 matrices
function [y,u,v] = get_yuv()
a=cam;
arraysize = size(a);
rows = arraysize(1);
y=zeros(640,480);
u=zeros(640,480);
v=zeros(640,480);
for i=1:(rows/2)
y(i,:) = a(2*i,:);
u(i,:) = bitand(a(2*i-1,:), hex2dec('F0'))-128;
v(i,:) = bitand(a(2*i-1,:), hex2dec('0F'));
end
end

5.5 btdfFilter Code
function [PSF] = btdfFilter(areaLens,OD,OL,sizeFilter,M,cameraPixelSize,gridAlpha,gridThetaIn,BTDF,p)

63

Appendix A Spatial Filtering

%function [PSF] = btdfFilter(areaLens,OD,OL,sizeFilter,t,n,M,cameraPixelSize,gridAlpha,gridThetaIn,BTDF,plot)%
%������������-Variables��������-%
%������������������������%
% Gareth Bell %
% Date Created 27/09/03 %
% Date Last Edited 27/09/03 %
% Revision 1.0 %
%������������Notes����������-%
%___%
%STAY IN OBJECT DOMAIN
%Calculate the distance between the diffuser and the lens
DL = OL - OD;
%Divisions along the object domain
deltaX = -(cameraPixelSize/M)*sizeFilter:(cameraPixelSize/M):(cameraPixelSize/M)*sizeFilter;
%Calculate the angles
thetaInT = atan(deltaX./OD)*180/pi;
thetaOutT = atan(deltaX./DL)*180/pi;
alpha = thetaInT + thetaOutT;
thetaIn = -abs(thetaInT);
%Get the �ler and plot the graph
fs = griddata(gridAlpha,gridThetaIn,BTDF,alpha,thetaIn,'cubic').*cos(thetaIn*pi/180);
PSF =fs*areaLens^2./((deltaX.^2 +OD^2).*(deltaX.^2 + DL^2))/M^2;
%Plot the graph
if p
h = gcf;
hold on
�gure(h);
subplot(1,3,2),plot3(alpha,thetaIn,fs,'.')
xlabel('thetaIn (degrees)')
ylabel('alpha (degrees)')
title('Angle In Vs Angle out of diffuser')

h = gcf;
�gure(h);
subplot(1,3,3),plot(deltaX*5,PSF);
title('Calculated Image Filter')
xlabel('Distance across CCD (m)')
ylabel('Spread function')
end

5.6 Calculate�lter Code

function [PSF] = calculateFilter(distance,diffuser,orientation,p)
warning off MATLAB:poly�t:RepeatedPointsOrRescale

64

Section A.6 Calculate�lter Code

warning off MATLAB:divideByZero
%Put in the perameters
areaLens = 7.1732e-005;
OD = distance;
OL = 34e-3;
t = 3e-3;
n = 1.5;
M = 5;
cameraPixelSize = 8.3e-6;
sizeFilter = 320;
hold on
%Load data
[angle,F] = processing(diffuser,orientation);
thetaIn = -[0, 15, 30, 45];
domain = min(angle)-1*15:max(angle)+4*15;
coeffs = zeros(3,4);
%Find when log(F) is at half the maximum of log(F)
positions = F > ones(length(F),1)*max(F)*0.5;
%Fit a curve to each of the graphs
for i = 1:4
[tempCoeffs,s] = poly�t([angle(positions(:,i))-thetaIn(i)], [log(F(positions(:,i),i))],2);
coeffs(:,i) = tempCoeffs';
alpha = [min(angle):max(angle)]-(thetaIn(i));
[�t(:,i)] = [zeros(15*i,1);exp(polyval(coeffs(:,i),alpha))';zeros(15*(5-i),1)];
end
if p
%Plot the �tted curve and the data if required
h = gcf;
�gure(h)
subplot(1,3,1),plot(domain,�t);
h = gcf;
�gure(h)
hold on;
subplot(1,3,1), plot(angle-thetaIn(1),F(:,1),'x',angle-thetaIn(:,2),F(:,2),'x',angle-thetaIn(:,3),F(:,3),'x',angle-

thetaIn(:,4),F(:,4),'x');
xlabel('alpha (degrees)');
ylabel('BDTF');
title('Fitted BDTF against alpha');
hold off;
end
%Form the interpolated function between the curves and graph it if required
[gridAlpha,gridThetaIn] = meshgrid(domain,thetaIn);
BTDF = �t';
[XI,YI] = meshgrid(domain,[0:-1:-45]);
ZI = griddata(gridAlpha,gridThetaIn,BTDF,XI,YI,'cubic');

65

Appendix A Spatial Filtering

%Plot the graph
if p
h = gcf;
�gure(h);
subplot(1,3,2), surf(domain,[0:-1:-45],ZI);
xlabel('alpha (degrees)')
ylabel('thetaIn (degrees)')
zlabel('BTDF')
title('Interpolated BTDF function along 10 degree orientaion for 60x10 holographic diffuser')
end
%Calculate the �lter
[PSF] = btdfFilter(areaLens,OD,OL,sizeFilter,M,cameraPixelSize,gridAlpha,gridThetaIn,BTDF,p);

5.7 compareresults code

function [positions,measuredCR,calculatedCR] = compareResults(x,diffuser,orientation,nullFileName);
%Predict the calculated contrast ratio
%Intialise Matricies
calculatedCR = zeros(50,6)*nan;
distance = [];
modelTarget = createModelTarget(nullFileName,0);
for i = 5:50
distance(i) = x(i).CR(1)/1000;
�lter = calculateFilter(distance(i),diffuser,orientation,0);
index = ~isnan(�lter);
�lter = �lter(index);
�lteredTarget = im�lter(modelTarget,�lter');
�lteredTarget = �lteredTarget(500:1140,:);
for j = 1:6
switch j
case {1}
IMAGE_Y_MAX = 640;
case {2,3}
IMAGE_Y_MAX = 620;
case {4,5,6}
IMAGE_Y_MAX = 300;
end
calculatedCR(i,j) = contrastRatio(�lteredTarget(1:IMAGE_Y_MAX,j));
end
end
%Plot the predicted contrast ratio
�gure
subplot(1,2,1),plot(repmat([distance]',1,6),calculatedCR);
title('Predicted Contrast Ratio')

66

Section A.8 convertData code

xlabel('Target - diffuser distance (mm)')
ylabel('Contrast Ratio')
hold on
%Plot the measured contrast ratio
measuredCR = [x.CR];
positions = [�nd(measuredCR==0),length(measuredCR)];
for i = 1:length(positions)-1;
left = positions(i)+1;
right = positions(i+1)-1;
subplot(1,2,2),plot(([measuredCR((left-1):2:(right-1))]),measuredCR(left:2:right),'x');
hold on;
end
title('Measured Contrast Ratio')
xlabel('Target - diffuser distance (mm)')
ylabel('Contrast Ratio')
markers = '.ox+*s'
%plot the measured contrast ratio against predicted contrast ratio
�gure
if length(positions)<=7
for i = 1:length(positions)-1;
left = positions(i)+1;
right = positions(i+1)-1;
plot(([calculatedCR(1:length(measuredCR(left+2:2:right)),i)]-2.5e-3),measuredCR(left+2:2:right),markers(i));
hold on;
end
else
for i = 1:6;
left = positions(i)+1;
right = positions(i+1)-1;
plot(([calculatedCR(1:length(measuredCR(left+2:2:right)),i)]-2.5e-3),measuredCR(left+2:2:right),markers(i));
hold on;
end
end
title('Measured Values Vs. Expected Values')
xlabel('Calculated Contrast Ratio')
ylabel('Measured Contrast Ratio')

5.8 convertData code
function convertData(number,orientation)

colour = ['GRB'];
inputAngle = ['00','15','30','45'];
if orientation ==1
orintationSymbol = 'H'

67

Appendix A Spatial Filtering

else
orintationSymbol = 'V'
end

for i = 1:4
for j = 1:3
baseName = strcat('DVI_',num2str(number), orintationSymbol,'_',colour(j),'_',inputAngle(2*i-

1),inputAngle(2*i));
inputName = strcat(baseName,'.brdf')
outputName = strcat(baseName,'.mat');
data = dlmread(inputName,'nt',1,0);
save(outputName,'data')
end
end

5.9 calculateModelTarget Code
function modelTarget = createModelTarget(nullFileName,p)

%������moveStage(InputImage)���������%
%Calculates a 1D model target given images of the real target
%����������-Variables����������-%
%Matrix of Luminaninance Values
%������������������������%
% Gareth Bell <gareth.bell@deepvideo.com> %
% Date Created 01/08/03 %
% Date Last Edited 01/08/03 %
% Revision 1.0 %
%������������Notes����������-%
load(nullFileName);
SIZE_PIXEL = 8.3e-6; %The size of the pixel in the Basler
mm_PER_m = 1000; %converstion factor between mm and m
M = 5; %The magni�cation of the camera lens
SPATIAL_FREQUENCY = [2,4,6,8,10,12] * mm_PER_m * SIZE_PIXEL /M; %This gives spatial

frequency on the CCD in cycles per pixel
k = 2*pi*SPATIAL_FREQUENCY; %convert this into a save number
meanImage = zeros(5*640,6); %Initialise the meanImage matrix
targetMin = zeros(1,6); %Intialise the vector that stores the miniumum value of the target image
targetMax = zeros(1,6); %Intialise the vector that stores the maxiumum value of the target image
newDomain = [1:5*640]';
Tmax = 1; %The maximum of our generated target
modelTarget = zeros(length(newDomain),6);
for i = 1:6

switch i

68

Section A.9 calculateModelTarget Code

case {1}
IMAGE_Y_MAX = 640;
case {2,3}
IMAGE_Y_MAX = 620;
case {4,5,6}
IMAGE_Y_MAX = 300;
end
meanImage = mean([x(i).image(1:IMAGE_Y_MAX,:)]'); %Find the mean value of the colummns and

store in a vector
[targetMin(i),targetMax(i)] = �ndExtreme(meanImage); %Find the maximum and minimum value of the

target
domain = 1:length(meanImage);

%Plot the target and the limits if desired
if p
y = ones(1,length(domain));
subplot(1,6,i)
plot(meanImage);
hold on;
subplot(1,6,i),plot(targetMin(i)*y,'red');
subplot(1,6,i),plot(targetMax(i)*y,'blue');
title(strcat('Mean image of target_',num2str(i)));
xlabel('distance (pixels)');
ylabel('Normalised response');
end
A = targetMax(i) - targetMin(i);
modelTarget(:,i) = [0.5*(sin(k(i)*newDomain)+1)*(A/targetMax(i)) + targetMin(i)/targetMax(i)]

;%calculate the model target values and store in a matrix
%which is nice coz you can just �lter the matrix
end

69

Appendix B
Moire Interference

5.1 MoireSQRITheory Code
function out = moireSqri(luminance,testImage,nullImage,X,Y)

%___%
%�������out = moire(testImage,nullImage,X,Y)�����%
%calculates the square root integral of the moire interfarence present
%������������-Variables��������-%
% testImage - rgb image with moire interfarence present
% nullImage - image using same camera on �at �eld of same luminance
% X - size of the image in the x direction in millimeters
% Y - size of the image in the y direction in millimeters
%
%������������������������%
% Gareth Bell %
% Date Created 13/09/03 %
% Date Last Edited 13/09/03 %
% Revision 1.0 %
%������������Notes����������-%
% Calculates the SQRI in the vertical direction only. Nice thing is that
% you can measure the average luminance using a light meter and everything
% else is spatial frequency dependent
%___%
testYuv = mean(testImage);
nullYuv = mean(nullImage);
test = mean(mean(testYuv(:,:,2)));
null = mean(mean(nullYuv(:,:,2)));
normalisedTest = (testYuv(:,:,2)/test);
normalisedNull = (nullYuv(:,:,2)/null);
impulse = zeros(size(testYuv(:,:,2)));
impulse(1,1) =1;
moireSqri = sqri(luminance,normalisedTest,impulse,X,Y);
nullSqri = sqri(luminance,normalisedNull,impulse,X,Y);
out = moireSqri - nullSqri;

5.2 SQRI Code
function I = SQRI(Luminance,testImage,referenceImage,X,Y)

70

Section B.2 SQRI Code

%����SQRI(Luminance,testImage,referenceImage_0,X,Y)����-%

%gareth.bell@deepvideo.com
%
%Calculate the square root integral metric for a viewing distance of
%570mm given a reference and a distorted image.
%������������-Variables��������-%
% Luminance - Average luminance of the images (this should be the same
%for both)
% testImage - The image to be compared
% referenceImage - The reference image
% X - The size of the image in the x direction in mm
% Y - The size of the image in the y direction in mm
%������������������������%
% Gareth Bell %
% Date Created 27/08/03 %
% Date Last Edited 28/08/03 %
% Revision 1.0 %
%������������Notes����������-%
%See Quality Aspects of Computer based Video Services for details
%Major revision and simpli�cation given Peter Barten's presentation pg 27
%___%
VIEWING_DISTANCE = 570; %Standard viewing distance
%see http://www.cquest.utoronto.ca/psych/psy280f/ch5/sf.html
% Find the size of the image
[nPixels, mPixels] = size(referenceImage);
%Convert the input size into degrees assuming viewing distance of 570mm
thetaX = atan(X / VIEWING_DISTANCE) * 180/ pi;
thetaY = atan(Y / VIEWING_DISTANCE) * 180/ pi;
%Calculate the size of the increments
deltaU = 1 / thetaX;
deltaV = 1 / thetaY;
%Do the fast fourior transforms of both images
F_testImage = fft2(testImage);
F_referenceImage = fft2(referenceImage);
%Find the modulation transfer function
mtf = abs(F_testImage ./ F_referenceImage);
%We need to create a grid of u and v values
[U, V] = meshgrid([deltaU:deltaU:(mPixels * deltaU)] , [deltaV:deltaV:(nPixels * deltaV)]);
%Calculate the frequency into the 1D Contrast sensitivity function
frequency = sqrt(U .^2 + V .^2);
%Calculate the contrast sensitivity function
localCsf = csf(frequency, Luminance, thetaX, thetaY);
%This needs to be integrated over a log grid
logGrid = 1 ./ (U .^2 + V .^2);
%Calculate the �nal integral

71

Appendix B Moire Interference

I = 1./(2 * pi * log(2))...
* sum(sum(sqrt(mtf .* localCsf) .* logGrid * deltaU * deltaV));

5.3 Contrast Ratio
function CR = ContrastRatio(inputImage)

%������moveStage(InputImage)���������%
%Calculates contrast ration of a given image
%����������-Variables����������-%
%Matrix of Luminaninance Values
%������������������������%
% Gareth Bell <gareth.bell@deepvideo.com> %
% Date Created 11/08/03 %
% Date Last Edited 11/08/03 %
% Revision 1.0 %
%������������Notes����������-%
%Get the mean of the image
meanImage = mean(inputImage,2);
%Calculate the contrast ratio
maxPos = lclmax(meanImage,3)
minPos = lclmax(-meanImage,3)
max = mean(meanImage(maxPos))
min = mean(meanImage(minPos))
CR= max/min
%������������������������
function pk = lclmax(x,p2)
%LCLMAX [A.K.Booer 3-Dec-1992]
%
% pk = lclmax(x,p) 1-D peak search down columns
% using peak half window width of p.
%
% Returns PK, a BOOLEAN matrix showing local maxima positions.
%
p = 2*p2 + 1; % full window width
[n,m] = size(x); % useful dimensions
z = zeros(p2,m); % pre-allocate result
i = toeplitz(p:-1:1,p:n); % shift operator
%
y = zeros(p,(n-p+1)*m); % temporary matrix
y(:) = x(i,:); % index into original data matrix
ma = max(y); % �nd maximum in window
%
pk = [z ; reshape(ma,n-p+1,m) ; z]; % add missing edge elements
pk = pk == x; % �nd matching elements

72

Section B.4 gatherData

%%

5.4 gatherData
function varargout = GatherData(varargin)

% GATHERDATA M-�le for GatherData.�g
% GATHERDATA, by itself, creates a new GATHERDATA or raises the existing
% singleton*.
% Last Modi�ed by GUIDE v2.5 14-Sep-2003 18:00:46
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', m�lename, ...
'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @GatherData_OpeningFcn, ...
'gui_OutputFcn', @GatherData_OutputFcn, ...
'gui_LayoutFcn', [] , ...
'gui_Callback', []);
if nargin & isstr(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
%� Executes just before GatherData is made visible.
function GatherData_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to �gure
% eventdata reserved - to be de�ned in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to GatherData (see VARARGIN)
% Choose default command line output for GatherData
handles.output = hObject;
%=========================CONFIGURATION=========================
%External Functions used:
%movestage
%��������������������-
% Output Structure - handles.output.[]
% e.g. - handles.ouput.Date
%��������������������-
% .date (time stamp)
% .image (image matrix)

73

Appendix B Moire Interference

% .target (Target Type): element of [2 4 6 8 10 12]
% .contrastRatio (Contrast ratio value): 0 < CR < 1
% .distance (Distance from stage to home in mm)
handles.contrast = cell(8,1);
handles.output = struct([]);
%��������������������-
% Temporary internal variables - handles.int.[]
%��������������������-
handles.int.s1 =0; %(Distance from home of stage 1)
handles.int.s2 =0; %(Distance from home of stage 2)
handles.int.serialID = cportopen('com2');
% .currentTarget %(The current target)
handles.int.index = 1; %(Current index into the strucuture, iterates when an image is taken)
set(handles.radiobutton1,'Value',1);
handles.int.button = 1;

handles.int.TARGET = [0 5 10 15 20 25];
%��������������������-
%Notes
% Update handles structure
guidata(hObject, handles);
% UIWAIT makes GatherData wait for user response (see UIRESUME)
uiwait(handles.�gure1);
% � Outputs from this function are returned to the command line.
function varargout = GatherData_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to �gure
% eventdata reserved - to be de�ned in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Get default command line output from handles structure
varargout{1} = handles.output;
%��������������������-
%GET IMAGE CODE����������������
%��������������������-
%� Executes on button press in GetImage.
function GetImage_Callback(hObject, eventdata, handles)
%Get and store the picture
tempIndex = handles.int.index;
tempImage = vcapg2;
nullImage = handles.nullImage;
SQRI= moireSqri(14,tempImage,nullImage,50,50);
handles.output(tempIndex).image = (tempImage);
handles.output(tempIndex).date = clock;
handles.output(tempIndex).currentTarget = handles.int.button;
handles.output(tempIndex).keep = 1;

74

Section B.4 gatherData

handles.output(tempIndex).SQRI = SQRI;
handles.output(tempIndex).distance = get(handles.Slider,'Value');
% Calculate and store the contrast ratio
handles.contrast{handles.int.button,1} = [handles.contrast{handles.int.button,1};[get(handles.Slider,'Value'),handles.output(tempIndex).SQRI

]]
hold on
axes([handles.axes1]) % Select the proper axes
cla
%Plot the contrast ratio
set(handles.axes1,'XLim',[0 2]);
set(handles.axes1,'Units','centimeters')
set(handles.axes1,'Position',[1.295 9.994 13.246 7.244])
set(handles.axes1,'NextPlot','add')
markers = '.ox+*s';
for i = 1:8
if ~isempty(handles.contrast{i,1})
h = line(handles.contrast{i,1}(:,1),handles.contrast{i,1}(:,2));
set(h,'Marker',markers(i))
end
end
handles.int.currentLine = h;
%Write the image
axes([handles.axes2])
cla
image(tempImage)
%Update the index
handles.int.index = handles.int.index + 1;
% Update handles structure
guidata(hObject, handles);
%�����������������
%� Executes on button press in Undo.
function Undo_Callback(hObject, eventdata, handles)
%Needs �eshing out after doing movement code
tempIndex = handles.int.index - 1
%Set the keep value to zero
handles.output(tempIndex).keep = 0;
%Remove the previous point and replot
handles
[len,x] = size(handles.contrast{handles.int.button,1})
len = len -1;
if len==0
handles.contrast{handles.int.button,1} =[]
axes([handles.axes2])
cla
end

75

Appendix B Moire Interference

if len~=0
handles.contrast{handles.int.button,1} = [handles.contrast{handles.int.button,1}(1:len,:)]
end
markers = ['.ox+*s'];
axes([handles.axes1]); % Select the proper axes
cla;
for i = 1:8
if ~isempty(handles.contrast{i,1})
h = line(handles.contrast{i,1}(:,1),handles.contrast{i,1}(:,2));
set(h,'Marker',markers(i));
end
end
handles.int.index = tempIndex;
guidata(hObject, handles);
%������������������������-
%MOVE 1 CODE���������������������
%OK
%������������������������-
%� Executes on button press in radiobutton1.
function radiobutton1_Callback(hObject, eventdata, handles)
handles.int.button = 1;
off = [handles.radiobutton2,handles.radiobutton3,handles.radiobutton4,...
handles.radiobutton5,handles.radiobutton6];
mutual_exclude(off)
% Update handles structure
guidata(hObject, handles);
% � Executes on button press in radiobutton2.
function radiobutton2_Callback(hObject, eventdata, handles)
handles.int.button = 2;
off = [handles.radiobutton1,handles.radiobutton3,handles.radiobutton4,...
handles.radiobutton5,handles.radiobutton6];
mutual_exclude(off)
% Update handles structure
guidata(hObject, handles);
% � Executes on button press in radiobutton3.
function radiobutton3_Callback(hObject, eventdata, handles)
handles.int.button = 3;
off = [handles.radiobutton1,handles.radiobutton2,handles.radiobutton4,...
handles.radiobutton5,handles.radiobutton6];
mutual_exclude(off)
% Update handles structure
guidata(hObject, handles);
% � Executes on button press in radiobutton4.
function radiobutton4_Callback(hObject, eventdata, handles)
handles.int.button = 4;

76

Section B.4 gatherData

off = [handles.radiobutton1,handles.radiobutton2,handles.radiobutton3,...
handles.radiobutton5,handles.radiobutton6];
mutual_exclude(off)
% Update handles structure
guidata(hObject, handles);
% � Executes on button press in radiobutton5.
function radiobutton5_Callback(hObject, eventdata, handles)
handles.int.button = 5;
off = [handles.radiobutton1,handles.radiobutton2,handles.radiobutton3,...
handles.radiobutton4,handles.radiobutton6];
mutual_exclude(off)
% Update handles structure
guidata(hObject, handles);
% � Executes on button press in radiobutton6.
function radiobutton6_Callback(hObject, eventdata, handles)
handles.int.button = 6;
off = [handles.radiobutton1,handles.radiobutton2,handles.radiobutton3,...
handles.radiobutton4,handles.radiobutton5];
mutual_exclude(off)
% Update handles structure
guidata(hObject, handles);
%�������������������������
%� Executes on button press in Move1.���������-
function Move1_Callback(hObject, eventdata, handles)
targetValue = handles.int.button
moveStageDelta(handles.int.s1,handles.int.TARGET(targetValue),1,handles)
handles.int.s1 = handles.int.TARGET(targetValue)
guidata(hObject, handles);
%������������������������-
%MOVE 2 CODE���������������������
%In Testing
%������������������������-
function Slider_Callback(hObject, eventdata, handles)
% � Executes on button press in Move2.
function Move2_Callback(hObject, eventdata, handles)
moveStageDelta(handles.int.s2,get(handles.Slider,'Value'),2,handles)
handles.int.s2 = get(handles.Slider,'Value');
% Update handles structure
guidata(hObject, handles);
% � Executes during object creation, after setting all properties.
function Slider_CreateFcn(hObject, eventdata, handles)
% Hint: slider controls usually have a light gray background, change
% 'usewhitebg' to 0 to use default. See ISPC and COMPUTER.
usewhitebg = 1;
if usewhitebg

77

Appendix B Moire Interference

set(hObject,'BackgroundColor',[.9 .9 .9]);
else
set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end
% � Executes on button press in Home2.
function Home2_Callback(hObject, eventdata, handles)
%Move the stage home and let the user know it is moving
set(handles.Moving2,'String','Moving.....')
stagehome(handles.int.serialID,2,-1)
set(handles.Moving2,'String',' ')
%Set the slider to the home position
set(handles.Slider,'Value',0);
%Update the tracking value
handles.int.s2 = 0;
% Update handles structure
guidata(hObject, handles);
%ADMINISTRATION CODE����������������
%� Executes during object creation, after setting all properties.
function SampleName_CreateFcn(hObject, eventdata, handles)
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
set(hObject,'BackgroundColor','white');
else
set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end
function SampleName_Callback(hObject, eventdata, handles)
% Hints: get(hObject,'String') returns contents of SampleName as text
% str2double(get(hObject,'String')) returns contents of SampleName as a double
% � Executes on button press in Finished.
function Finished_Callback(hObject, eventdata, handles)
cportclose(handles.int.serialID)
guidata(hObject, handles);
% UIWAIT makes GatherData wait for user response (see UIRESUME)
uiresume(handles.�gure1);
%����������������������-
%SUB FUNCTIONS
%����������������������-
%����������������������-
function moveStageDelta(presentPosition, �nalPosition, button, handles)
switch button
case 1
%Make sure the push-button stays down
set(handles.Move1,'Value',0);
%Tell the user the stage is moving

78

Section B.5 createDisplay Code

set(handles.Moving1,'String','Moving.....');
%Move the stage
moveStage(handles.int.serialID,1,(�nalPosition-presentPosition));
%Delete the 'Moving' text
set(handles.Moving1,'String',' ');
% Bring the button back up
set(handles.Move1,'Value',1);

case 2
%Make sure the push-button stays down
set(handles.Move2,'Value',0);
%Tell the user the stage is moving
set(handles.Moving2,'String','Moving.....');
%Move the stage
moveStage(handles.int.serialID,2,(�nalPosition-presentPosition));
%Delete the 'Moving' text
set(handles.Moving2,'String',' ');
% Bring the button back up
set(handles.Move2,'Value',1);
end

%�������������������������
function mutual_exclude(off)
set(off,'Value',0);
% � Executes on button press in pushbutton8.
function pushbutton8_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton8 (see GCBO)
% eventdata reserved - to be de�ned in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
handles.nullImage = vcapg2;
guidata(hObject, handles);

5.5 createDisplay Code
function X = createDisplay(D,pixelOrder)

%Make the display, should be on three seperate layers
%gewt
subpixel_s=[D.subpixel_s.h,D.subpixel_s.v];
blackmatrix_s=[D.blackmatrix_s.h,D.blackmatrix_s.v];
trans_s=[D.trans_s.h,D.trans_s.v];
red = subpixel([1,0,0],subpixel_s,blackmatrix_s,trans_s,0);
green = subpixel([0,1,0],subpixel_s,blackmatrix_s,trans_s,0);
blue = subpixel([0,0,1],subpixel_s,blackmatrix_s,trans_s,0);
if pixelOrder == 'R'

79

Appendix B Moire Interference

pixel = [red green blue];
else
pixel = [blue green red];
end
X = stamp(pixel,D.Pixels.v,D.Pixels.h);

5.6 subPixel Code
function ColourFilter = SubPixel(PixelColour,PixelSize,BlackMatrixSize,TransistorSize,show)

%function ColourFilter = SubPixel(PixelColour,PixelSize,BlackMatrixSize,TransistorSize,show)
%Pixel colour is vector with [R,G,B] as red green and blue components respectively
%Pixel size is vector with [hPixelSize,vPixelSize] in 10s of micrometers
%BlackMatrixSize is vector : [hTraceWidth,vTraceWidth] in 10s of micrometers
%Transitor sixe is vector : [hTransistorSize,vTransistorSize] in 10s of micrometers
%Image is plotted if show is true
%Make Colour �lter
% close all
ColourFilter=ones(PixelSize(2),PixelSize(1),3);
for i=1:3
i;
ColourFilter(:,:,i)=ColourFilter(:,:,i).*PixelColour(i); %Make each layer of sub pixel a component of red,

green or blue
end
%Add horizontal matrix and vertical matrix
%Add left ends
ColourFilter((1:BlackMatrixSize(1)),:,:)=0;
ColourFilter(:,(1:BlackMatrixSize(2)),:)=0;
%Add right ends
hEnd=PixelSize(1)-(BlackMatrixSize(2)-1);
vEnd=PixelSize(2)-(BlackMatrixSize(1)-1);
ColourFilter(:,(hEnd:PixelSize(1)),:)=0;
ColourFilter((vEnd:PixelSize(2)),:,:)=0;
%Add transistor
ColourFilter((1:TransistorSize(1)),(1:TransistorSize(2)),:)=0;
%Show image of pixel
if show
image(ColourFilter);
axis([0,max(PixelSize),0,max(PixelSize)]);
end

80

